Desde el área de investigación científica os compartimos una noticia donde se explican seis proyectos de investigación para descubrir los mecanismos de la regeneración neuronal, estos proyectos serán financiados durante tres años por los institutos de salud en Estados Unidos, y esperan poder a través de esta iniciativa impulsar un mayor conocimiento para comprender el funcionamiento neuronal, y las posibles maneras de revertir o evitar su pérdida.
Jueves, 01 de septiembre 2016
Seis equipos buscan identificar los factores biológicos que influyen en la regeneración neuronal
El NIH otorgará 12.4 millones de dólares durante tres años como parte del esfuerzo audaz para revertir la ceguera.
Los Institutos Nacionales de Salud financiaran seis proyectos para identificar los factores biológicos que afectan a la regeneración neuronal en la retina. Los proyectos forman parte del Instituto Nacional del Ojo (NEI) iniciativa metas audaces (AGI), un esfuerzo dirigido a restaurar la visión mediante la regeneración de las neuronas y sus conexiones en el ojo y el sistema visual. Estos proyectos recibirán un total de 12.4 millones de dólares durante tres años, dependiendo de la disponibilidad de fondos.
"La comprensión de los factores que intervienen en la regeneración de las neuronas y el crecimiento de los axones es crucial para el desarrollo de terapias innovadoras para enfermedades que causan ceguera. Lo que aprender a través de estos proyectos tendrán un impacto en la salud más allá de la visión ", dijo Paul A. Sieving, MD, Ph.D., director del NEI, parte de los NIH.
La mayoría de los resultados de una ceguera irreversible son por la pérdida de neuronas en la retina, que es el tejido sensible a la luz en la parte posterior del ojo. Muchas enfermedades comunes del ojo, incluyendo la degeneración macular relacionada con la edad, el glaucoma y la retinopatía diabética, ponen en riesgo estas células. Una vez que estas neuronas se han ido, los seres humanos tienen poca o ninguna capacidad para reemplazarlos.
Estos seis proyectos se sumará a la base de conocimientos de varios avances clave recientes. Los investigadores informaron recientemente una técnica que aumenta la capacidad de regeneración de los axones de la retina en un modelo de ratón de lesión del nervio óptico, un modelo comúnmente utilizado para estudiar el glaucoma y otras neuropatías ópticas. También se ha hecho en la identificación de factores que o bien estimulan o inhiben la regeneración de neuronas necesarias para la visión. Los proyectos financiados recientemente se verá aún más esta área de investigación mediante la identificación de las señales que guían a los axones de los objetivos adecuados en el cerebro, lo que permite conexiones funcionales para volver a establecer entre el ojo y el sistema de procesamiento visual.
Los seis proyectos incluyen:
Descubrimiento molecular para la regeneración del nervio óptico (EY027261-01)
Los investigadores principales: Jeffrey L. Goldberg, MD, Ph.D., Andrew D. Huberman, Ph.D., Universidad de Stanford, Palo Alto, California; Larry Benowitz, Ph.D., Universidad de Harvard, Cambridge, Massachusetts; Hollis Cline, Ph.D., Instituto de Investigación Scripps, La Jolla, California
Goldberg y sus colegas han demostrado a través de una serie de intervenciones en los ratones con lesión del nervio óptico que pueden regenerar con éxito de la retina axones células ganglionares, que forman el nervio óptico que transmite información visual desde la retina hasta el cerebro. En esta siguiente fase de la investigación que esperan identificar los genes y las proteínas que ayudan u obstaculizan esta capacidad de las células ganglionares de la retina para regenerar, crecer axones a un objetivo y llegar a ser funcional en ratones. moleculares candidatos prometedores serán investigadas en estudios en animales a largo plazo diseñados para evaluar los cambios en la visión de los animales.
La detección de moléculas que promueven la sinaptogénesis del fotorreceptor (EY027266-01)
Los investigadores principales: Donald J. Zack, MD, Ph.D., de la Universidad Johns Hopkins, Baltimore; David Gamm, MD, Ph.D., Universidad de Wisconsin, Madison
Zack, Gamm, y su equipo planean estudiar las células fotorreceptoras precursoras derivadas de células madre humanas para determinar qué factores ayudan para convertirse en células fotorreceptoras plenamente desarrollados y conectados. Ellos esperan que sus estudios para identificar una lista de pequeñas moléculas y genes candidatos que contribuyen a la capacidad de las células fotorreceptoras huesped en sus células diana apropiadas en la retina, conocidas como células bipolares. En un ojo sano, células bipolares reciben señales de las células fotorreceptoras a través de una sinapsis y luego transmiten esta información, ya sea directamente o indirectamente a las células ganglionares de la retina. La generación de las sinapsis apropiadas entre los fotorreceptores y células bipolares es un paso esencial para restaurar la visión a través del trasplante de fotorreceptores.
Evaluación de nuevas dianas para la regeneración de los axones de las células ganglionares de la retina (EY027256-01)
Investigador principal: Stephen M. Strittmatter, MD, Ph.D., Universidad de Yale, New Haven, Connecticut
Strittmatter y su equipo también están en busca de genes que contribuyen a la regeneración de los axones de las células ganglionares de la retina. A partir de 450 genes candidatos, entresacado de más de 17.000, que pondrán a prueba cada candidato en un modelo de lesión del nervio óptico del ratón, para ver si alguno actúan como mediadores de la regeneración. genes positivos entonces serán validados tomando para ver si ellos también son activos en el gusano C. elegans, una indicación de que la función de un gen se conserva en todas las especies. Los genes candidatos más fuertes serán analizados con mayor detalle para comprender mejor su acción molecular.
Activadores novedosos de la regeneración de las células de Müller (EY027265-01)
Los investigadores principales: Edward M. Levine, Ph.D .; James G. Patton, Ph.D .; David J. Calkins, Ph.D. Facultad de Medicina, Nashville, Tennessee Universidad de Vanderbilt
Levine y sus colegas están investigando factores exógenos y endógenos - es decir, con factores de origen externo o interno - que contribuyen a la reprogramación con éxito de células de apoyo en la retina llamadas células de Müller. En el pez cebra, células de Müller pueden dar lugar a células fotorreceptoras después de la lesión de la retina. En primer lugar, los investigadores planean probar una nueva combinación de agentes farmacológicos y la manipulación genética para la capacidad de reprogramar células de Müller en ratones. Si la terapia tiene éxito, entonces van a estudiar las condiciones que apoyan la regeneración mediante la determinación de qué genes se activan o desactivan en la regeneración de pez cebra y la glía ratón Muller. Un segundo componente de su proyecto se analizará el papel de los exosomas, pequeñas vesículas secretadas por células encuentran comúnmente en la sangre y otros fluidos corporales, en la promoción de la regeneración.
Los análisis de transcriptómica y epigenómicos comparativas de Muller reprogramación glía (EY027267-01)
Los investigadores principales: David R. Hyde, Ph.D., Universidad de Notre Dame, South Bend, Indiana; John D. Ash, Ph.D., Universidad de Florida, Gainesville; Andy J. Fischer, Ph.D., Universidad Estatal de Ohio, Columbus; Seth Blackshaw, Ph.D., y Jiang Qian, Ph.D., Universidad Johns Hopkins, Baltimore
En el pez cebra y los pollitos, induce daño en la retina las células de Müller para reprogramar y volver a entrar en el ciclo celular para producir células progenitoras neuronales, que son capaces de mover al tejido de la retina dañada y se convierta en los tipos de células neuronales que faltan. Mientras células de Müller pueden iniciar una respuesta regenerativa en el pez cebra y retinas dañadas de pollo, células de Müller de mamíferos no pueden, lo que impide la regeneración de la retina y la restauración de la visión en los seres humanos y otros mamíferos. Hyde y sus colegas están comparando la capacidad de las células de Müller de pez cebra, pollos y ratones para llevar a cabo este tipo de reprogramación. A partir de la células de Müller en cada animal, van a determinar qué actividad de los genes se upregulated o downregulated (transcriptómica), así como la mirada de modificaciones en el ADN genómico (epigenomics), durante el desarrollo de la retina y en respuesta a las diferentes formas de daño en la retina. Estos tipos de comparaciones entre especies están diseñados para detectar diferencias en la expresión génica, así como para identificar posibles reguladores que controlan las células de Müller reprogramación. Este trabajo arrojará luz sobre por qué algunas especies poseen la capacidad de regenerar sus retinas dañadas mientras que los humanos no pueden.
Nuevos objetivos para promover la regeneración de los axones de las CGR: Insights de cohortes únicas células ganglionares de la retina (EY027257-01)
Los investigadores principales: Kevin Park, Ph.D .; Vance Lemmon, Ph.D .; Sanjoy Bhattacharya, Ph.D., Universidad de Miami Miller School of Medicine
Park y Lemmon están utilizando secuenciación de ARN en las células ganglionares de la retina de ratón en cultivo para identificar las diferencias en la expresión de genes en regenerativa frente a las células ganglionares de la retina no renovables. En paralelo, Park y Bhattacharya utilizarán espectrometría de masas para determinar que los lípidos (o moléculas de grasa) puede dar subclases de células ganglionares de la retina más robustas capacidades regenerativas. Los investigadores van a continuación, realizar una serie de experimentos destinados a comprender la función de los genes que se encuentran involucrados en la regeneración. Los genes candidatos más prometedores se pueden utilizar como una terapia dirigida a la regeneración del nervio óptico en un modelo de ratón con lesión del nervio óptico.
Investigación científica.
Rodrigo Lanzón.